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Properties of TE-~TM Mode-Matching Techniques

Gian Guido Gentili

Abstract —A line integral formulation of TE-TM mode-matching
techniques for scattering problems in waveguides is described. The
procedure is convenient from a computational point of view when the
modes in the waveguides must be computed numerically. Some interest-
ing properties of TE-TM mode-matching techniques are then demon-
strated.

- 1. INTRODUCTION

In the analysis of scattering from waveguide discontinuities,
the mode-matching technique, whenever it can be applied, is by
far the most popular way to solve the problem. It has been used
to solve scattering problems in several different kinds of wave-
guides, such as the rectangular waveguide [1]-[5], the microstrip
line [9], the finline [13], and the circular waveguide (or coaxial
cable, see e.g. [18]). Scattering caused by the transition between
different kinds of waveguides has been dealt with too (see e.g.
[17]). Although several formulations can be used to represent
the fields at the discontinuity interface, the TE-TM field expan-
sion is the most general one when homogeneous waveguides
with perfectly conducting walls are considered. Such field ex-
pansion derives the tangential components of the electric and
magnetic fields from the longitudinal ones: the tangential com-
ponents of the fields are then matched at the discontinuity
interface, yielding a infinite system of linear equations. An
approximate solution of the system of equations is then found by
truncating the infinite series. Some properties of such approxi-
mate solution of the system of equations have been discussed in
[14] (e.g. the relative convergence problem).

This paper focuses on some general properties of TE-TM
field expansions in perfectly conducting waveguides when they
are matched at some arbitrarily shaped waveguide discontinuity.
It can be shown that the surface integrals resulting from match-
ing the tangential field components can almost always be ex-
pressed as line integrals along the boundary of the region over
which surface integration is carried out. Such reduction in the
dimensionality of the integration is convenient from a computa-
tional point of view when the modes in the waveguides must be
computed numerically. To be more specific, the line integral
formulation is best suited when the modes in the waveguides are
computed by techniques based on some' integral equation ex-
pressed on the boundary, since in that case the modal eigen-
functions are computed only on the boundary of the waveguide
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cross section. The application of the line integral formulation of
mode matching is then directly applicable, without the need for
a time-consuming computation of the eigenfunctif)ns at internal
points in the waveguide cross section. On the other hand, the
reduction to line integrals has pointed out an interesting prop-
erty of mode-matching techniques: some coefficients represent-
ing coupling between TE and TM modes are always null; i.e.,
such modes are uncoupled. Such phenomenon have been ob-
served in [2] and [17] for two particular cases (rectangular-to-
rectangular waveguide junction and rectangular-to-circular
waveguide junction). It will be shown here that it is quite
general and independent of the shape of the waveguide cross
section.

II. FORMULATION

Consider the scattering problem represented by the transition
between two arbitrarily shaped perfectly conducting walls wave-
guides (Fig. 1). Let S; be the cross section of guide 1, o, its
boundary, §, the cross section of guide 2, and o, its boundary.
Let then 2 =5, S, and C be its boundary.

Let E;, and H, be the transverse electric and magnetic
fields of the gemeric mode n in region I (with S; the cross
section of the related waveguide). Such tangential fields can be
expressed as the sum of two contributions: a TE field and a TM
field. They can be derived from the two longitudinal fields E.;,
and H,;, (z being the coordinate relative to the direction of
propagation, so that the z dependence of the fields is of the
type exp(F jBz)). By expanding the fields in the two waveguides
as sums of the modal fields multiplied by unknown coefficients,
one gets

Ng
Eymg = h (eitTE)n + eI?TE)n)VQDIn Xz (1
n
Ng
Hygy = h (eI+(TE)n - ef(TE)n)YI(TE)nV%n (2)
n
Ny
Eymvy = h (eFETM)n + eiTM)n)VlﬁIn 3)
n
Ny
Hyoruy = Y (C’IJ?TM)n - ef(TM)n)YI(TM)nV(//In X 2. 4
n
Here
YI(TE)n =p I(TE)n Jop
and

Yirmyn = @€/ Byt

Re[Byrry.J(Re[ Byrmy,]) being the propagation constant of the
nth TE(TM) mode. Also, 2 is the unit vector of the z axis, V is
the transverse gradient, w is the angular frequency, w is the
magnetic permeability of the medium (throughout this work
1= itg), and e is the dielectric constant. The modal series have
been truncated by retaining only a limited number of modes.
The unknown coefficients with suffixes “+” or “—" account for
a wave traveling toward + z (+) and a wave traveling toward
— z (—). The scalar functions ¢y, and ¢, are then the solu-
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Fig. 1. Geometry of a generic scattering problem. S1 and S2 are the

two waveguide cross sections. €} is the common region.

tions of the following boundary value problems:

V2¢In+k12nqoln=0 in SI
Vo, i=0 on oy %)

V%, + ki, =0 in S
¥, =0 on oy (6)

for which the following normalizing condition holds:
2 {2 Jo—
Jet.ds= [yt ds=1 @)
Sl Sl

and are therefore the normalized longitudinal fields. The quan-
tity k, is the eigenvalue of the nth TE mode and «,, is the
eigenvalue of the nth TM mode in waveguide I (Bf(TE),, = w’ue
— ki, Bitmyn = @*ue — k2,). Continuity of the tangential com-
ponents of the fields at the discontinuity region requires that

E.=E, inQ (8)
H,=H, il (9)
E; =0 if % iselectric

in3=(5US,)-Q { 10)

H;=0 if 2 is magnetic.

Equations (8)-(10) can be converted to a set of algebraic
equations by projecting them onto some suitable functional
space. The general case requires projecting (8)-(10) onto a
complete space of vector functions with no simplifications (that
is, no previous knowledge of the problem). By defining the
scalar product of two vector fields 4 and B as

P=/A-BdS

and observing that a complete set of vector functions for the
tangential E field and the tangential H field in region S
satisfying the boundary conditions is given by the space of TE
and TM modes themselves, a linear set of equations is obtained
by first writing (8)—(10) as follows:

Ey ey + Eyrvy = Exerey + Eaervy- (11)
Hl(TE) + HI(TM) = H2(TE) + HZ(TM)' (12)
(HI(TE) + Hypyy) OF ( Eygqgy + Eyryy) =0 onX. (13)

Then by substituting (1)-(4) into (11)~(13) one obtains the basic
equations to be projected onto the functional space chosen for
E and H.
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The equations representing the generic projection are then

fVlhn' (Eicrey * Eiray) S

- /V‘pln' (Exrey + Extmy) dS (14)

f(VsaIn X £)( Eyre, + Eyerapy) 45
= f(V<oIn X 2)*( Eyerey + Exerany) 4S (15)

[Vﬁ"ln' (Hire) + Hyay) dS
= (Vo1 (Hars)y + Hyy) dS (16)

f(Vlhn X 2)+(Hyerg)+ Hyryy) dS
= [ (Vb % 2) (Hore, + Haerw) 5. (17)

It is pointed out that in effect the functional spaces used to
project (14)—(17) are still undetermined. Although the set of TE
and TM modes is complete, some further consideration should
be given to the boundary condition. Depending on the type of
scattering problem, the functional spaces in effect change. For
simplicity we will consider the case §; S, and I a perfectly
conducting wall. In this case the functional spaces can be
defined as follows: for the electric field equations a suitable
functional space is the space of the tangential electric fields of
TE and TM modes in region 1, while for the magnetic field
equations a suitable functional space is the space of the tangen-
tial magnetic fields of TE and TM modes in region 2.

In fact, given the field expansions (1)-(4), the tangential
electric field in region 1 may be regarded as a known quantity (0
on 3 and E, on S,); therefore it can be projected onto the
modes of region 1. The magnetic field in region 2 can be
regarded as a known quantity too (H, on S,) and it can be
projected onto the modes of region 2. Therefore in (14) and (15)
I'=1, while in (16) and (17) I =2. Since E=0 on 3, by includ-
ing this condition in the projections, the integrals on the right in
(14) and (15) extend over S,. If 3 were a perfect magnetic wall,
the regions of the projections would need to be interchanged.

After substitution of (1)—(4) into (14)-(17), one gets the final
system of equations. By proper algebric manipulation the gener-
alized scattering matrix can be obtained ({16]).

III. TransFORMATION TO LINE INTEGRALS

By inspection on the projection equations, the following inte-
grals appear in the electric field equations:

& re(m,n, 1,J,55) = /S Vi, Vo, X 2dS (18)
E

GZ,TM(ms”»I’LSE):fS Vi, Vi, dS (19)
E

th_TE(m,n,I,J,SE)=fSV<p1m><2~V<p,n><2dS (20)
E

& omlm,n, 1,0,5;) =fs Ve, X 2V, dS
E

=&, m(n.m,J,1,5) (1)
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where S, =8, if I=J=1and S, =S, if I+ J. In the magnetic
field equation the integrals are the following:

%,TE(m7nuIy J: SH) =j; Vgo,m'Vzp,ndQ
H

=&, re(m,n, 1,7, Sy) (22)

Hy ra(m,n, 1,1, Sy) =[SHV¢,,,,-V¢M X 2d ()
=~ & m(n,m,J,LSy)  (23)

H rp(m,n, LI, Sy) = fsﬂv¢,m X £-Vo,, d
~ & e(m,n,1,1,8y) (24)

H o(mon, 1,1, Sy) =[S Vi, X 8-V, X 2dQ)
H

=&, mm(m,n,1,J,Sy) (25)
where S, = S,.

Let us now identify the three fundamental types of integra-
tions:

j;Vl/JIm'V‘PJn X 2dQ =Ey5ma(S) (26)

fS V1 Vi1, A =Ty, () (27)

V01 X 290, X 2dQ = Dy, (S) (28)
S

where § in the generic region. Letting o be the boundary of S,
7 the unit vector defined along o pointing outward, § the unit
vector identifying the direction tangent to o (counterclockwise),
according to Green’s first identity the following equalities hold:

j;VA-VBdQ=LAVB'ﬁds—fSAV-VBdQ

= [BVA-iids~ [BV-V4dQ  (29)
o s
[VAVB x £d0 = [ AVB-§ds=— [BVA-3ds  (30)
s o (e
A and B being two generic scalar fields [15]. Since
V‘Vgoln =~ k%n‘pln (31)
V'Vlllln == Klzndfln' (32)
After some algebraic manipulations one gets
(P.In alplm
'—’IJmn(S) [ll’lm f‘PIn (33)
it1=7 k%6,
\I,IJmn(S) = fI1=7 { I;Jmn lf Kin + Kim (34)
\IjIJmn lf KIn =Kim
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where
W, (8) = L flp s—K2f¢ Wi 45
IJmn [m K]n Im Im™ 5 n Jn & Jn n
(35)
lI’;IJmn(S) = K?mfwlmlpjn ds = Kgn'/‘wlmwjn das. (36)
s K
Then
ifI1=17 k23,,
q)IJmn(S) = FI-7T cI)%,Jmn lf kIn #* kJm (37)
CI:'IJmn if kIn = k]m
where
, 1 ‘PJn ‘le
Opymn(S) = Ezm " k2 (klmf¢1m kjnf‘PJn d»")
(38)
\PI’/Jmn(S) = k%m[g‘PImQOJn dS = k;n[ggplm(PJn dS (39)

In (33)-(39), excluding the case «;, =k, or k;,=k;,, only
line integrals appear.

It is interesting to note that some terms are always null. This
happens in the expressions for ¥y,,, . and ®},,,,, where one of
the line integrals vanishes, either the function itself or its
normal derivative being null. Moreover

EIJmn(SI) =0 (40)

The problem can now be cast in matrix form. Let us introduce

€ TE= [eﬂTE)n + eI_(TE)n] (41)
€1 v = [ef[TM),, + e{(TM)n] (42)
hy g = dlag[YI(TE)n] [eIJETE)n - eI_(TE)n]
= Dy 15| €5itE)n — €xEm | (43)
by o = diag[ Yierson | [ €tervn — €ierman]
= DI.TM[eﬂTM)n - eﬂTM)n] (44)
F{P=[®11,n(S))] FP=[®1,n(S)]
FR =[®0,,(S)]  F2=[02,a(5)] (45)
PP =¥ (D] P =[Yiama(SD)]
Py = !.\I,ﬂmn(sl)] P%z) [‘I’zzmn(SI)] (46)
XD =[Erma(S)] X7 =[Epma(Sn]
X =[Eoma(S)] XL =[Enma(S)]- (47)

Equations (13)-(20) can be written as follows:

F(l) Xﬁy €1, TE - ng) Xg)’ €2 TE (48)
Xﬁ) Py €1, ™ XS) PJ('Zz) €2.T™

F@ X&' || by _ 2 X8 || hae (49)
X(q) Py by v X3 P s v
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where the prime denotes the transpose matrix. Equations (48)
and (49) represent respectively the FE-field and the H-field
equations imposing the continuity of the fields at the interface.
The upper matrix equations are the pI’OjeCtIOIlS onto the space
of TE modes (matrices FQ, X', FP x@' F®' - x@
F2, — X2 the lower matrix equations are the projections
onto the space of TM modes (matrices X{}), PY x2,
PP, — xP. PP, — XB, PE). According to the previous discus-
sion the following equalities hold:

F{p=diag[k},] f, F=diag[k3,] = f,  (50)
P{P =diag[«7,] = p, P@ =diag[«3,] = p,
X{=X;7=0. (1)
The matrix equations now become
S 0 ||ete _ F? 0 €2 TE (52)
0 pi]lerm™ x@ PR €™
FP X3 || h , 0 ||
12 12 LTE | _ fa 2,TE (53)
0 PS) hy v 0 p, hy v

Equations (52) and (53) are quite general: they represent the
matrix equations resulting from the application of the mode-
matching technique to a quite arbitrary structure (with the
assumptions previously stated).

It can be observed that the TM fields in waveguide 2 (the
smaller one) and the TE fields in waveguide 1 never couple,
independently of the boundary shape.

The elements of the matrices are then the following:

FR =[fml,

ki?m'/; PL1imP2n as if klm = an
2
fmn = agD (54)
71{ f @ — ™ ds  otherwise
_ k2 2n - 2n on
PR =[D],
Ki’lm'/:g ¢1m¢2n ds if Kim = Koy,
2
pmn = l aw” (55)
———«} ——ds otherwi
Py Klm-/(;zlﬁlm o s otherwise
@ 33,
X12 =[xmn]7 Xm f lplm 3s ds. (56)

As a further comment, it is pointed out that although the
integrals are extended over o, if a part of o, belongs to o too,
all the line integrals of (54)—(56) relative to that part vanish,
since throughout o, 4,,, =0 and d¢,,, /0n=0. In that case,
letting ! be the part of o, not belonging to o too, all the line
integrals in (54)—(56) extend over /.

It can then be observed that the coupling of tangential fields
of TE modes in the different waveguides depends on the cou-
pling of the longitudinal components when the modes have the
same eigenvalue (see eq. (39)) and the same happens for TM
modes (eq. (36)).

When S, does not enclose $, completely, a different formula-
tion should be employed. Although several cases have been
analyzed in the literature and several formulations can be used,
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by considering the junction of the two waveguides as a cascade
connection of two junctions: (S1, $; N $,)+(8; N S,,5,), the pro-
jections can be done as described in Section II (this procedure
may not be the most convenient one, since it requires a knowl-
edge of the modes in region S, N §,). For the two single junc-
tions the formulas presented in this paper still hold, but this
does not imply that TE modes in a waveguide do not couple
with TM modes in the other. Coupling may be present as a
result of the cascade connection of the two junctions.

IV. Concrusions

Some properties of TE-TM mode-matching formulations for
the analysis of scattering in waveguides can be easily demon-
strated by reducing the surface integrals representing the projec-
tions of the equations of continuity of the tangential fields to
line integrals. In particular it has been observed that whenever
the cross section of a waveguide completely encloses the other,
TE modes in the smaller waveguide never couple with TM
modes in the larger waveguide, independently of the shape of
both waveguides.

The reduction to line integrals is then convenient from a
computational point of view, especially when a numerical method
must be employed to compute the waveguide modes. In particu-
lar the results of numerical methods based on the formulation of
an integral equation expressed on the boundary of the wave-
guide are directly applicable in (54)-(56).
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High-Pgrformance HEMT Amplifiers with a Simple
Low-Loss Matching Network

R. Peter, M. V. Schneider, and Y. S. Wu

Abstract —We report on the design and performance of a K-band
HEMT amplifier whese passive circuit consists of low-loss suspended
stripline elements. The single-stage amplifiers were built at 4 GHz and
22 GHz by using readily available commercial HEMT devices. In the
desired frequency range from 21 to 23 GHz for the high-frequency
design, the best spot noise temperatures were 150 K and 65 K at 21.5
GHz for room and liquid nitrogen temperatures, respectively.

1. INTRODUCTION

Recent advances in the performance of HEMT’s make it
possible to use the devices in low-noise applications, such as
front ends for high-data-rate communications links or remote
sensing circuits, instead of complex and expensive maser systems
[11-[4]. The main objective of the work described in this paper
was to design and construct an amplifier at 22.235 GHz for a
water vapor radiometer. Another objective was to use inexpen-
sive and readily available chips embedded in a low-loss sus-
pended microstrip structute (air line) instead of the more widely
used coaxial air line design [5], [6].

Encouraged by the good results of a cryogenic IF amplifier at
4 GHz consisting of an air line structure, we used a similar
design at 22 GHz. The absence of dielectric losses and a
stripline to waveguide transition are the main features of our
low-loss tuned circuit design. Since these circuits do not have a
substrate, problems with thermal contraction of different mate-
rials will not occur when the amiplifier is cooled. The air line
design offers higher flexibility in making changes and reduces
turnaround times for achieving optimized noise performance.
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Furthermore, no expensive substrates or precision photolitho-
graphic facilities are necessary.

II. AmrLiriER DESsIiGN

A schematic drawing showing the top view of the single-stage
K-band amplifier is displayed in Fig. 1. The microstrip quarter-
wave transformer consists of a milled gold-plated brass strip
(0.15 mm thick) which is supported by two 0.25-mm-thick quartz
slabs. The end of the low-impedance section is tapered in order
to reduce the capacitive interaction between the air line and the
grounded ridge in which the HEMT chip (Fyjitsu FHR02X) is
embedded (Fig. 2). In order to achieve a low parasitic induc-
tance we used short gold wires with a diameter of 18 um to
connect the chip to the circuit by thermocompression bonding.

The input and output matching networks do include the air
line—waveguide transitions, which are realized by a probe (50 Q
line section) extending 2.6 mm into the waveguide [7], [8]. The
transitions have been tested with a 50 Q trough line which is
1.1 mm wide and 0.25 mm above the ground plane of the
housing. We medsured a total insertion loss of the trough line of
0.5 dB (i.e., approximately 0.25 dB per transition) over a band-
width of 2 GHz. Since this simple transition has a relatively
narrow bandwidth, optimum tuning can be obtained at other
center frequencies in the K band by adjusting the broad-band
backshort.

The low-impedance sections of the transformers optimized for
room temperature operation have a width of 2 mm and a length
of 4.5 mm at the input and a length of 5.75 mm at the output,
respectively. For the bias circlits a 90° radial stub on a 0.25-
mm-thick alumina substrate was used with a A /4 high-imped-
ance bond wire. In order to improve the stability of the ampli-
fier we added a 50 Q series fesistor and a shunt capacitor of
10 pF to the bias network and filled the cavity of the bias
network with absorber material. In the following section we
consider a simple calculation of the different noise contributions
and the associated loss of the input matching circuit.

The noise performance of an amplifier is determined by the
ohmic loss of the matching network to the input of the transistor
and by the noise characteristics of the transistor. The noise
temperature of an HEMT amplifier with a lossy input matching
network can be expressed as the sum of two terms:

T,=(L-1T,+ LTygur (1)
where L is the ohmic loss factor, 7} is the physical temperature
of the network, and Typyr is the noise temperature of the
transistor referred to the input of the matching network. Tygyr
is characterised by four noise parameters. Tyyy, the minimum
noise temperature; Zgpr = Ropr + Xopr, the optimum source
impedance; and gy, the noise conductance. Over a narrow
bandwidth, Tyeyr of a well noise matched transistor is approxi-
mately equal to Ty

The total loss, L, of the matching circuit and transition at 22
GHz can be calculated with Tygyr = 105 K (from the manufac-
turer’s data sheet for the FHR02X) and the measured amplifier
noise temperature T, =170 K at room temperature (7, = 300 K)
using (1).

Table T shows the estimated losses of the input circuit (includ-
ing the transitions) for the 22 GHz amplifier and the 4 GHz

amplifier (similar construction).
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