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Properties of TE-TM Mode-Matching Techniques

Gian Guido Gentili

Abstract —A line integral formulation of TE-TM mode-matching
techniques for scattering problems in waveguides is described. The
procedure is convenient from a computational point of view when the
modes in the wavegnides must be computed numerically. Some interest-

ing properties of TE–TM mode-matching techniques are then demon-

strated.

I. INTRODUCTION

In the analysis of scattering from waveguide discontinuities,

the mode-matching technique, whenever it can be applied, is by

far the most popular way to solve the problem. It has been used

to solve scattering problems in several different kinds of wave-

guides, such as the rectangular waveguide [1]–[5], the microstrip

line [9], the finline [13], and the circular waveguide (or coaxial

cable, see e.g. [18]). Scattering caused by the transition between

different kinds of waveguides has been dealt with too (see e.g.

[17]). Although several formulations can be used to represent

the fields at the discontinuity interface, the TE–TM field expan-

sion is the most general one when homogeneous waveguides

with perfectly conducting walls are considered. Such field ex-

pansion derives the tangential components of the electric and

magnetic fields from the longitudinal ones: the tangential com-

ponents of the fields are then matched at the discontinuity

interface, yielding a infinite system of linear equations. An

approximate solution of the system of equations is then found by

truncating the infinite series. Some properties of such approxi-

mate solution of the system of equations have been discussed in

[14] (e.g. the relative convergence problem).

This paper focuses on some general properties of TE-TM

field expansions in perfectly conducting waveguides when they

are matched at some arbitrarily shaped waveguide discontinuity.

It can be shown that the surface integrals resulting from match-

ing the tangential field components can almost always be ex-

pressed as line integrals along the boundary of the region over

which surface integration is carried out. Such reduction in the

dimensionality of the integration is convenient from a computa-

tional point of view when the modes in the waveguides must be

computed numerically. To be more specific, the line integral

formulation is best suited when the modes in the waveguides are

computed by techniques based on some integral equation ex-

pressed on the boundary, since in that case the modal eigen-

functions are computed only on the boundary of the waveguide
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cross section. The application of the line integral formulation of

mode matching is then directly applicable, without the need for

a time-consuming computation of the eigenfuncti&s at internal

points in the waveguide cross section. On the other hand, the

reduction to line integrals has pointed out an interesting prop-

erty of mode-matching techniques: some coefficients represent-

ing coupling between TE and TM modes are always null; i.e.,

such modes are uncoupled. Such phenomenon have been ob-

served in [2] and [17] for two particular cases (rectangular-to-

rectangular waveguide junction and rectangular-to-circular

waveguide junction). It will be shown here that it is quite

general and independent of the shape of the waveguide cross

section.

II. FORMULATION

Consider the scattering problem represented by the transition

between two arbitrarily shaped perfectly conducting walls wave-

gttides (Fig. 1). ILet S1 be the cross section of guide 1, UI its

boundary, S2 the cross section of guide 2, and rz its boundary.

Let then 0 = SI n S2 and C be its boundary.

Let ,131n and lYIn be the transverse electric and magnetic

fields of the generic mode n in region I (with SI the cross

section of the related waveguide). Such tangential fields can be

expressed as the sum of two contributions: a TE field and a TM

field. They can be derived from the two longitudinal fields ,ZZI.

and H= ~~ (z being the coordinate relative to the direction of

propagation, so that the z dependence of the fields is of the

type exp ( T j~z)). By expanding the fields in the two waveguides

as sums of the modal fields multiplied by unknown coefficients,

one gets

Here

iind

(2)

(3)

Nhi

‘I(TM)s ~ (eLTM)n – el;TM)n )Y1(TM)~V@lm X ,?. (4)
n

Y I(TE)n = BI(TEjj7 /~P

Y l(TM)ri = ~~/B1(Th4)H t

Re [pI(TE),,](Re [BI(T~).l~ being the Propagation constant of the

Mth TE(TM) mode, Also, 2 is the unit vector of the z axis, V is
the transverse gradient, aI is the angular frequency, K is the

magnetic permeability of the medium (throughout this work

,U = u ~), and c is the dielectric constant, The modal series have
been truncated by retaining only a limited number of modes.

‘The unknown coefficients with suffixes “+” or “–” account for

a wave travelin~ toward + z ( + ) and a wave traveling toward
— z (–). The scalar functions q 1. and @l. are then the solu-
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Fig. 1. Geometry of a generic scattering problem, ,S1 and S2 are the
two waveguide cross sections. 0 is the common region.

tions of the following bounda~ value problems:

V2+11~+ k~~pl~ = O in S1

v(fJ1n. ii = o on UI (5)

v2i,h1n + K;#ln = O in SI

*,n = o on mI (6)

for which the following normalizing condition holds:

and are therefore the normalized longitudinal fields. The quan-

tity kl~ is the eigenvalue of the nth TE mode and JCImis the

eigenvalue of the nth TM mode in waveguide I (~ ~(TE). = @21.LE

) Continuity of the tarlgential com-– k?n, P~(TM)n = 02we – Kfn .

ponents of the fields at the discontinuity region requires that

El= E2 in Cl (8)

HI= Hz in 0. (9)

(E1 = O if z is electric
in Z=(Sl US2)– Q

HI = O if z is magnetic.
(lo)

Equations (8)–(10) can be converted to a set of algebraic

equations by projecting them onto some suitable functional

space. The general case requires projecting (8)--(10) onto a

complete space of vector functions with no simplifications (that

is, no previous knowledge of the problem). By defining the

scalar product of two vector fields A and B as

P=~A. BdS
s

and observing that a complete set of vector functions for the
tangential E field and the tangential H field in region S

satisfying the boundary conditions is given by the space of TE

and TM modes themselves, a linear set of equations is obtained

by first writing (8)–(10) as follows:

‘I(TE) + %( TM) = E2(TE) + E2(TM) . (11)

H l(TE) + ‘l(TM) = ‘2(TE) + ~2(TM). (12)

Then by substituting (l)-(4) into (11)-(13) one obtains the basic

equations to be projected onto the functional space chosen for

E and H.

The equations representing the generic projection are then

/v41.(BITEI+BITM,) ds

‘/v~,n(B~cTE)+B~TM))dS (14)

((vp~~ x ~) (%,TE}+ ~l(TM)) ds

——
/( VQ1. x ~) “ ( EZfTE) + 172(TM)) ds (15)

/v~I~’(Hl,TE)+Hl,TM))ds

‘Jv91n”(~2(TE,+ H2(TM)) ds (16)

/_(vvl~ ‘E) “(H,(TE)+ HI(TM)) dS

=/(V#~~ x ~) (H~,T~,+ HZ,TM,) dS. (17)

It is pointed out that in effect the functional spaces used to

project (14)-(17) are still undetermined. Although the set of TE

and TM modes is complete, some further consideration should

be given to the boundary condition. Depending on the type of

scattering problem, the functional spaces in effect change. For

simplicity we will consider the case SI c S2 and Z a perfectly

conducting wall. In this case the functional spaces can be

defined as follows: for the electric field equations a suitable

functional space is the space of the tangential electric fields of

TE and TM modes in region 1, while for the magnetic field

equations a suitable functional space is the space of the tangen-

tial magnetic fields of TE and TM modes in region 2.

In fact, given the field expansions (l)–(4), the tangential

electric field in region 1 maybe regarded as a known quantity (O

on Z and E2 on S2); therefore it can be projected onto the

modes of region 1. The magnetic field in region 2 can be

regarded as a known quantity too (Hl on S2) and it can be

projected onto the modes of region 2. Therefore in (14) and (15)

1 =1, while in (16) and (17) 1 =2. Since E = O on 2, by includ-

ing this condition in the projections, the integrals on the right in

(14) and (15) extend over S2. If Z were a perfect magnetic wall,

the regions of the projections would need to be interchanged.

After substitution of (l)–(4) into (14)–(17), one gets the final

system of equations. By proper algebric manipulation the gener-

alized scattering matrix can be obtained ([16]).

III. TRANSFORMATION TO LINE INTEGRAN

By inspection on the projection equations, the following inte-

grals appear in the electric field equations:

J‘e, TE(m, n, 1, J, SE) = V*Im”VpJn X 2dS
SE

<, TM(m, n, I, J, SE) = vti~m”vti~.ds/SE

‘h. TE(m, n,l, J, SE) = ~E%Jm x ~’vf9Jn X 2dS

‘h,’rM(m, n,l, J>sE) ‘/SEvPIrn x ~“vblnds

‘4.m(n.m>J,z>sE)

(18)

(19)

(20)

(21)
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where SE = SI if I = J = 1 and SE = S1 if I # J. In the magnetic

field equation the integrals are the following:

‘%h,TE(m> n, r, J, ‘H) = ~HvpIm”v+’Jn do

=&h,TE(m,n, Z,J,SH) (22)

=–&,m(n, rn,J,z, s~) (23)

=-~, T~(m,n, I, J,S~) (24)

=rf,TM(m, n, I, J,S~) (25)

where SH = S2.

Let us now identify the three fundamental types of integra-

tions:

where S in the generic region. Letting u be the boundary of S,

ii the unit vector defined along u pointing outward, j the unit

vector identifying the direction tangent to u (counterclockwise),

according to Green’s first identity the following equalities hold:

J J= BVA. iids – BVVAdfl
G- .?

jVA.VB x fdfl = /AVB.2ds = –~BVA.~ds
s u u

A and B being two generic scalar fields [15]. Since

After some algebraic manipulations one gets

(29)

(30)

(31)

(32)

(33)

(34)

(35)

Then

where

(38)

In (33)–(39), excluding the case KJn = iclm or k~m = kl~, only

line integrals appear.

It is interesting to note that some terms are always null. This

happens in the expressions for ~~J~X and @~Jma, where One Of

the line integrals vanishes, either the function itself or its

normal derivative being null. Moreover

EIJmn(s,)= o (40)

The problem can now be cast in matrix form. Let us introduce

‘I,TE= [eiTE)n+eiIEjn]

‘I,TM = [etTM)t+efiTM)n]

hI,TE = diag[ ‘IfTE)n ] [e~TE)n - ‘fiTE)n]

=D
[ -1I,TE ‘{TE)n — ‘I(TE)n

hI,TM = ‘iag[ ‘I(TM). ] [e~TM)n ‘e&I)n]

=D
[ -1LTM ‘~TM)n – ‘I(TM)n

w=l@llmn(sI)l m)= [%nln(s,)]

w= I%ASI)I @= [%?ASI)I

w = [’f’llmn(sz)l w= [~nmn(s,)l

w = [~21mn(sI)l %)= [~22mn(s,)l

w= I[%,wn(s,)] w= [%),l.(sl)l

x$!) = IIE,lmn(s,)] xj~’ = [&2,.n(s,)].

Equations (13)–(20) can be written as follows:

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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where the prime denotes the transpose matrix. Equations (48)

and (49) represent respectively the ~-field and the II-field

equations imposing the continuity of the fields at the interface.

The upper matrix equations are the projections onto the space

of TE modes (matrices Ff~), X~~)’, Ff~), X$~)’, F&’, – X~~)’,

F$$, – X$)’): the lower matrix equations are the proje~tions

onto the sp~:e of TM modes (matrices X~~), P[;) ,X~~),
(2)) According to the previous discus-

Pg), – x$;), P& , – x$:), P22 .

(50)

(51)

(52)

(53)

Equations (52) and (53) are quite general: they represent the

matrix equations resulting from the application of the mode-

matching technique to a quite arbitrary structure (with the

assumptions previously stated).

It can be observed that the TM fields in waveguide 2 (the

smaller one) and the TE fields in waveguide 1 never couple,

independently of the boundary shape.

The elements of the matrices are then the following:

APzn
Xy = [Xmn], Xmn= / +lm-&.q

(56)

As a further comment, it is pointed out that although the

integrals are extended over crz, if a part of mz belongs to al too,

all the line integrals of (54)–(56) relative to that part vanish,

since throughout al @lm,= O and dpl~ /dn = O. In that case,

letting 1 be the part of U2 not belonging to al too, all the line

integrals in (54)–(56) extend over 1.

It can then be observed that the coupling of tangential fields

of TE modes in the different waveguides depends on the cou-

pling of the longitudinal components when the modes have the

same eigenvalue (see eq. (39)) and the same happens for TM

modes (eq. (36)).

When SI does not enclose S2 completely, a different formula-

tion should be employed. Although several cases have been

analyzed in the literature and several formulations can be used,

by considering the junction of the two waveguides as a cascade

connection of two junctions: (Sl, SI n S2) + (Sl n S2, S2), the pro-

jections can be done as described in Section II (this procedure

may not be the most convenient one, since it requires a knowl-

edge of the modes in region SI n S2). For the two single junc-

tions the formulas presented in this paper still hold, but this

does not imply that TE modes in a waveguide do not couple

with TM modes in the other. Coupling may be present as a

result of the cascade connection of the two junctions.

IV. CONCLUSIONS

Some properties of TE–TM mode-matching formulations for

the analysis of scattering in waveguides can be easily demon-

strated by reducing the surface integrals representing the projec-

tions of the equations of continuity of the tangential fields to

line integrals. In particular it has been observed that whenever

the cross section of a waveguide completely encloses the other,

TE modes in the smaller waveguide never couple with TM

modes in the larger waveguide, independently of the shape of

both waveguides.

The reduction to line integrals is then convenient from a

computational point of view, especially when a numerical method

must be employed to compute the waveguide modes. In particu-

lar the results of numerical methods based on the formulation of

an integral equation expressed on the boundaty of the wave-

guide are directly applicable in (54)-(56).
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High-Performance HEMT Amplifiers with a Simple

Low-Loss Matching Network

R. Peter, M. V. Schneider, and Y. S. WU

Abstract —We report on the design and performance of a K-band
HEMT amplifier whose passive circuit consists of low-loss suspended

stripline elements. The single-stage amplifiers were built at 4 GHz and
22 GHz by using readily available commercial HEMT devices. In the
desired frequency range from 21 to 23 GHz fo,r the high-frequency
design, the best spot noise temperatures were 150 K and 65 K at 21.5
GHz for room and liquid nitrogen temperatures, respectively.

I. INTRODUCTION

Recent advances in the performance of HEMT’s make it

possible to use the devices in low-noise applications, such as

front ends for high-data-rate communications links or remote

sensing circuits, instead of complex and expensive maser systems

[1]-[4]. The main objective of the work described in this paper

was to design and construct an amplifier at 22.235 GHz for a

water vapor radiometer. Another objective was to use inexpen-

sive and readily available chips embedded in a low-loss sus-

pended microstrip structure (air line) instead of the more widely

used coaxial air line design [5], [61.

Encouraged by the good results of a cryogenic IF amplifier at

4 GHz consisting of an air line structure, we used a similar

design at 22 GHz. The absence of dielectric losses and a

stripline to waveguide transition are the main features of our

low-loss tuned circuit design. Since these circuits do not have a

substrate, problems with thermal contraction of different mate-

rials will not occur when the amplifier is cooled, The air line

design offers higher flexibility in making changes and reduces

turnaround times for achieving optimized noise performance.
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Furthermore, no expensive substrates or precision photolitho-

graphic facilities are necessary.

II. AMPLIFIER DESIGN

A schematic drawing showing the top view of the single-stage

K-band amplifier is displayed in Fig. 1. The microstrip quarter-

wave transformer consists of a milled gold-plated brass strrip

(0.15mm thick) which is supported by two 0.25-mm-thick quartz

slabs. The end of the low-impedance section is tapered in order

to reduce the capacitive interaction between the air line and the

grounded ridge in which the HEMT chip (Fujitsu FHR02X) is

embedded (Fig. 2). In order to achieve a low parasitic induc-

tance we used short gold wires with a diameter of 18 Wm to

connect the chip to the circuit by thermocompression bonding.

The input and output matching networks do include the air

Iine-waveguide transitions, which are realized by a probe (50 Q

line section) extending 2.6 mm into the waveguide [71, [81. The

transitions have been tested with a 50 Cl trough line which is

1.1 mm wide and 0.25 mm above the ground plane of the

housing. We medsured a total insertion loss of the trough line of

0.5 dB (i.e., approximately 0.25 dB per transition) over a bartd-

width of 2 GHz. Since this simple transition has a relatively

narrow bandwidth, optimum turiing can be obtained at other

center frequencies in the K band by adjusting the broad-band

backshort.

The low-impedance sections of the transformers optimized for

room temperature operation have a width of 2 mm and a length

of 4.5 mm at the input and a length of 5.75 mm at the output,

respectively. For the bias circi$ts a 90° radial stub on a 0.25-

mm-thick alumina substrate was used with a A/4 high-imped-

ance bond wire. In order to improve the stability of the ampli-

fier we added a 50 Q series fesistor and a shunt capacitor of

10 pF to the bias network and filled the cavity of the bias

network with absorber material. In the following section we

consider a simple calculation of the different noise contributions

and the associated loss of the input matching circuit.

The noise performance of an amplifier is determined by the

ohmic loss of the matching network to the input of the transistor

and by the noise characteristics of the transistor. The noise

temperature of an HEMT amplifier with a 10SSYinput matching

network can be expressed as the sum of two terms:

TA = (L –l)TL + LTHEMT (1)

where L is the ohmic loss factor, TL is the physical temperature

of the network, and T~E~T is the noise temperature of the

transistor referred to the input of the matching network. THEMT

is characterised by four nofie parameters. T~lN, the minimum

noise temperature; ZOPT = R OPT + XOPT, the optimum source

impedance; and gN, the noise conductance. Over a narrow

bandwidth, T~EIWT of a well noise matched transistor is approxi-

mately equal to T~lN.

The totdl loss, L, of the matching circuit and transition at 22

GHz can be calculated with THEMT= 105 K (from the manufac-

turer’s data sheet for the FHR02X) and the measured amplifier

noise temperature TA = 170 K at room temperature (TL = 300 K)

using (l).

Table I shows the estimated losses of the input circuit (includ-

ing the trartsitions) for the 22 GHz amplifier and the 4 GHz

amplifier (similar construction).
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